
831 

Acta Cryst. (1995). A51, 831-840 

Bragg-Case Images of Stacking Faults 

BY W. WIERZCHOWSKI* AND M. MOORE 

Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 OEX, England 

(Received 17 November 1994; accepted 12 June 1995) 

Abstract 

Bragg-case synchrotron double-crystal images of stack- 
ing faults have been studied in a synthetic diamond. 
The topographs taken on the tails of the rocking curve 
showed well pronounced interference fringes arising 
from the stacking faults: the first such observation in 
Bragg diffraction geometry. The fringes were strongly 
dependent upon the angular setting, being invisible at 
the rocking-curve maximum but gaining in contrast 
and becoming more closely spaced further from the 
maximum. These experimental images were compared 
with predictions of plane-wave dynamical theory and 
a reasonably good correspondence was obtained when 
the finite beam divergence was taken into account. It 
was found that the theoretical fringe sequences depended 
upon the stacking fault and confirmed that the stacking 
faults observed were of intrinsic type. 

1. Introduction 

The interest in studying stacking faults with X-ray 
topography and electron microscopy has two main mo- 
tivations. Firstly, stacking faults are important as com- 
mon crystallographic defects. Secondly, stacking faults 
provide an opportunity for successful application of 
the dynamical theory of diffraction for explaining the 
observed interference fringes. Most X-ray investigations 
into stacking faults have been by section topography 
(see e.g. Kato, Usami & Katagawa, 1967; Authier, 1968; 
Jiang & Lang, 1983; Kowalski & Lang, 1986; Kowalski, 
Lang, Makepeace & Moore, 1989), where spherical- 
wave theory was applied. The theoretical description of 
transmission plane-wave diffraction on stacking faults 
was included in the above-mentioned papers by Authier 
(1968) and Kato et al. (1967) and was also given by 
Kato (1974). 

The observation of interference fringes is usually 
more difficult in back-reflection diffraction geometry 
(Bragg case) than in transmission diffraction geometry. 
To our knowledge, no observations of fringe patterns in 
stacking-fault images have been reported in the Bragg 
case. The difficulty in obtaining such fringes is as- 
sociated with the attenuation of X-rays, redueing the 
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thickness of the layer capable of contributing to in- 
terference effects. In addition, interference fringes are 
expected only on the tails of the rocking curve and, 
in view of their strong angular dependence, can be ob- 
served only with good collimation of the incident beam. 
Some interference fringes were observed in the Bragg- 
case plane-wave images of dislocations (Bubfikov~i & 
~ourek, 1976; Bedyriska, Bub~ikov~i & ~ourek, 1976; 
Gronkowski, 1980) and there is still considerable interest 
in studying Bragg-case interference fringes associated 
with other defects. 

A very convenient material for obtaining interference 
fringes in stacking-fault images is diamond. It is com- 
posed of atoms with very low atomic number and it 
absorbs X-rays less than most other crystals. Stacking 
faults are common in diamond and can easily be found in 
otherwise good-quality crystals. The recent development 
of the reconstitution method for growing large diamonds 
(Strong & Wentorf, 1972; Bums, Robertson & Keddy, 
1993) has enabled samples suitable for such experiments 
to be readily available. 

In the present work, we obtained Bragg-case images 
of stacking faults using double-crystal arrangements with 
a synchrotron source of X-rays. The experimental images 
were compared with theoretical images obtained from 
a simple adaptation of former plane-wave approaches 
to the Bragg case, which also included the effects of 
incident-beam divergence. 

Some results of actual work were presented at 
the International School on Synchrotron Radiation 
in Natural Science held in Jaszowiec and published 
elsewhere (Wierzchowski & Moore, 1992). 

2. Theoretical 

The back-reflection images of stacking faults can be 
classified as corresponding to either Bragg-Laue or 
Bragg-Bragg cases. In the first of these cases, the part 
of the crystal behind the stacking fault produces the 
diffracted beam intersecting it, while in the Bragg-Bragg 
case the beam is reflected back towards the first region 
of the crystal. We concentrate here on the Bragg-Laue 
case. (In our present experiments, we observed fringes in 
the images corresponding also to the Bragg-Bragg case 
and they will be the subject of further studies.) 

The multiplication of wave fields at the stacking fault 
in the Bragg-Laue case is shown in Fig. 1, while the 
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position of the wave points corresponding to the excited 
wave fields is shown in Fig. 2. Both figures correspond 
to the low-angle tail of the rocking curve. At the high- 
angle side, the indices 1 are replaced by indices 2 and 
vice versa. 

We found it reasonable to assume that only one wave 
point is excited by the incident wave. It should, however, 
be mentioned that complete elimination of interference 
effects due to the beam reflected from the rear surface 
requires more than 40× attenuation of that beam. At the 
low-angle side of the rocking curve, this assumption may 

not be entirely appropriate with the present thickness 
(0.7 ram) of the diamond slab. In actual experiment, 
negligibility of the second wave was due both to its 
absorption and to the imperfections in the crystal, which 
played a significant r61e because of the relatively long 
distance travelled by the wave reflected from the rear 
surface. The other possible factor was the preparation 
of the rear surface, which also caused losses in the 
internally reflected wave. 

The coordinates of the wave point excited by the 
incident beam are 

l ~ ~ ~ - - . .  ~o,,~,/ L Z~,,~,, 

Doj(o,) 

Fig. 1. Wave multiplication at a stacking fault (OS) in the Bragg-Laue 
case of diffraction. The incident plane wave of amplitude D (~) 
and wave number h" excites in the first part of the crystal a single 
wave field consisting of the waves D0i, Dhz with i -- 2 for the low- 
angle side of the rocking curve (~!/ > 1) and i = 1 for the high-angle 
side (Ry < - 1 ) .  The two wave fields are decomposed in the fault 
plane into waves in the transmitted and reflected directions. In region 
II, each of these waves generates two wave fields (four waves). The 
amplitudes of these waves are denoted by Doj(o,) ,  Dh)(oi) , Doj(hi) 
and Dhj(hi) with j = 1, 2 and subscripts in parentheses indicating 
the exciting beam. 
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Fig. 2. Positions of the wave points on the dispersion surfaces. Situations 
correspond to the low-angle tail of  the rocking curve. The single wave 
point excited primarily in the first region A(2 ) is located on the normal 
to the entrance surface. The Poynting vector connected with this point 
is directed inwards towards the crystal. One of the points excited in the 
second part of the crystal coincides with this point, while the second 
point A(1 ) is located on the second branch of the dispersion surface 
on the normal to the fault plane passing through A(,~). 

~;i) 1 
_ 71ClK(%/17hl) l /2(XhXi , ) t /Z[y  + ( y 2  _ 1)1/2], 

(1) 
where K is the wave number of the incident wave, 
Xo, Xh, X~ are the Fourier coefficients of dielectric 
susceptibility, C is the polarization factor and %,  7h are 
the direction cosines of the incident and reflected beams 
with respect to the normal to the entrance surface. 

y = - [ s i n  26)A6) + 1X0(1 - ')'h/70)] 

× [ICl(17hl/%)l/2(XhXr,)l/2] -1 (2) 

with A6) the deviation from the Bragg angle 6). i = 1 
and the upper sign is valid for ~y  < - 1  (~  denotes the 
real part of y) and i - 2 and the lower sign is valid 
for SRy > 1. 

The ratios of the reflected amplitude Dhi to  the 
amplitude Dog of the forward-diffracted wave are given 
by 

c(g) = Dhg/Dog = 2 ~ ( i ) / C K x h  (3) 

and 

Dog = D(o a), Dhg = c (i)D(0 a), (4) 

where D~ a) denotes the amplitude of the incident wave. 
The second part of the crystal is shifted with respect 

to the first (Authier, 1968) by the fault vector f and the 
dielectric susceptibility in region II is 

with 

X' = E X'h(--2rcih • f) (5) 

' = Xhexp( 27rih" f), Xh Xh ' = x h e x p ( - 2 ~ i h  f), 
(6) 

where h is the reciprocal-lattice vector. 
The one wave field excited in the first region (region 

I) of the crystal is split by the stacking fault into reflected 
and transmitted waves. Behind the fault plane (region II), 
these two waves excite four new wave fields. The fifth 
wave field in region II is excited by the incident wave. 
These five wave fields correspond to the two wave points 
situated on the normal to the fault plane. One of these 
points coincides with the wave point excited in the first 
region. 
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The rrle of absorption is very important and it causes 
some difficulty in the treatment based on the application 
of plane-wave dynamical theory. The attenuation of 
crystalline waves is described by the imaginary part of 
wave vectors and the interference components coming 
from the imaginary parts of the coordinates ~0,h are 
determined by the continuity relation at the entrance 
surface. In an absorbing crystal, the waves created by 
decomposition of the wave fields at the plane obstacle, 
which is not parallel to the entrance surface, have 
variable amplitudes along the obstacle. In various appli- 
cations of dynamical theory, they are still treated as plane 
waves, especially if phenomena along the wave vector 
are considered. It is, however more complicated to write 
the continuity relation between the imaginary parts of the 
wave vectors in the two regions of the crystal, similar 
to that on the entrance surface. This difficulty appears 
in the total reflection range, where the imaginary parts 
of the wave vectors are dominant; and it is difficult to 
treat the beam passing through the stacking fault as a 
plane wave. For this reason, we do not apply the present 
theory to the total reflection range. On the other hand, 
no fringes were observed experimentally in this region. 

Including absorption requires appropriate calculation 
of the imaginary parts of the wave vectors induced by the 
wave fields decomposed at the fault plane. In particular, 
the imaginary parts of the wave vectors corresponding to 
the initially induced wave point cannot be approximated 
in region II by those from region I. In order to find 
the coordinates of the wave points with the correct 
imaginary parts, we first found the deviations from the 
Bragg angle of the waves created by the decomposition 
of the wave field in the fault plane. By some geometrical 
considerations, which may be found from Figs. 2 and 3, 
these deviations are: 
for the forward diffracted wave: 

t 1 AOo, = A O  + ~(~(oi) / K  + 5Xo) sin a /%7~;  (7) 

for the reflected wave: 

, 4o 'h i  ' / ' = - ( % / % ) A 0 o ~ .  (8) 

The direction cosines of the reflected and transmitted 
waves with respect to the normal to the fault plane are 
n o w  

! 
7 ~ ) = s i n ( a + q o - O )  and 7 h = s i n ( a + q o + 6 9 ) .  

(9) 

In the above formulae, qa is the inclination of the reflect- 
ing planes to the surface and a is the inclination of the 
stacking fault to the surface, with the positive direction 
marked in Fig. 3. In Fig. 2, AO'oi = M P ' / K  and 
AO'hi = M Q ' / K .  In the situation actually shown, AO'oi 
is negative. The directions of the incident and back- 
reflected waves correspond to P O  and QH,  respectively. 

We can now find the complete expressions for the 
coordinates of the wave points using the normal for- 
mulae of dynamical theory in the Laue case. Here, the 
subscripts in parentheses denote the exciting wave. 

__ 1 t t 1/2 
~o~(o,) - - ~ l C l g ( % l % )  (X'hX'h) a/2 

x [y' 4- (y,2 4- 1)1/2], (10) 

where the new variable y' corresponds to the Laue-case 
diffraction in region II with the deviation from the Bragg 
angle given by AO'oi" 

1 t / Y/ = -[sin2( ')AO'oi  + 7X0( 1 -7h/7~))] 
/ T t ~ l / 2 ( " J  . , t  ~ 1 / 2 ] - 1 .  

x [ 1 6 1 ( % ,  0,  ~ h ~ h ,  (11) 

The remaining coordinates of the wave points excited by 
the forward-directed wave may be written 

2 / / 2 
~hi(Oi) = K XhXhC /4~oi(oi ) (12) 

t ,~t 
~Oj(Oi )  ---- - -  ( ' ~ 0 /  h ) ~ h i ( O i )  ( 1 3 )  

~hj(Oi) -- --(7'h/q';)~Oi(Oi). (14) 

j = 1,2; i ~ j and the indices of the incident wave 
(in parentheses) are i = 1 for ~Ry < - 1  and i = 2 for 
~ y >  1. 

The coordinates of the wave points induced by the 
reflected wave can now be found similarly by noting 
that the reflected wave can be treated as the incident 
wave for the - h  diffraction vector with the deviation 
from the Bragg angle AO~hi . Then the required coor- 
dinates may be found from those corresponding to the 
above-mentioned case after interchanging the subscripts 
indicating the reflected and incident beams. 

z C Kr,y '/,.,J~ll2[.,,t .,,L~l/2 
~ h i ( h i )  -'- - -  21 k h / l O ]  \A .  h A . h ]  

× [Yh 4- (y2 + 1)1/2], (15) 

where the new variable Yh corresponds to the deviation 
from the Bragg angle AO'hi" 

1 , (1 - " r0 / ' rh ) ]  Yh = -- [sin2OA(-)'hi + ~ Xo ' ' 

× [ i c 1 ( . ~ ; i . ~ , ~ 1 / 2 , . . ,  . , ,  ~ 1 / 2 ] - 1  ] \ A h A h ]  • (16) 

_ 0 , P 

Fig. 3. The geometrical relation of  the stacking fault in real space ( O S  
- its intersections with the plane of diffraction). The arrow indicates 
the positive direction of the angle c~. 
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Hence, 

= K XhXhC / 4 ~ h i ( h i  ) (17) ~Oi(hi) 2 , , 2 

~h j (h i )  : --  ('fflO/~th )~Oi(hi) (18) 

-'-- -- ( T h / 7 0 ) ~ h i ( h i ) "  (19)  ~Oj(hi)  ' ' 

j = 1,2; i # j and the indices of the incident wave 
(in parentheses) are i = 1 for ~Ry < -1  and i = 2 for 
~ y >  1. 

We can now list the four amplitudes of the waves 
in the diffracted beam, contributing to the Bragg-Laue- 
case stacking-fault image. For the waves excited by 
the forward-diffracted wave, the amplitudes Ohj(Oi) a r e  

given by 

Dhx(Oi) = D(a) (2 /KXhC)  

X [~01(0i) ~02(0 i ) / (~02(0 i )  -- ~01(0i))] (20) 

calculated Resonanzfehler using the relation 

1 
ko,h(1)  --  G0,h(/) + K + ~ K X o , h ( I ) ,  (27) 

where (I) denotes different possible extension of indices. 

3. Numerical calculations 

The above theory provided the basis for performing 
the calculations of theoretical images using appropriate 
computer programs. The relatively simple analytical for- 
mulae and the one-dimensional character of the problem 
allowed for calculation of both plane-wave theoretical 
images and integrated images taking into account the fi- 
nite divergence of the beam existing in real experiments. 
The results were either plotted as a graph or presented 
in the form of a simulation of the topographic image. 

Dh2(Oi)  - -  -- D h l ( O i ) ,  (21) 

where in region II the c '(a) has a different phase: 

c '(a) = exp (27rih. f). (22) 

The amplitudes of the wave excited by the reflected 
wave may be written as 

= D('~)..,(a)c / O h l ( h i )  0 ~ % h 2 ( h i ) / ( ~ h 2 ( h i )  -- ~ h l ( h i ) )  (23) 

D h 2 ( h i )  - -  - - D h l ( h i ) .  (24) 

In region II, we also have one wave field excited by 
the incident wave. This has again the same wave point as 
the wave field excited in the first region but the diffracted 
wave has a different phase, 

D'hi = D~ a) c '(a) = Dhi exp(2~-ih • f). (25) 

For calculation of theoretical images, we present the 
resultant amplitude of the diffracted beam as a function 
of the distance from the stacking-fault outcrop O (Fig. 
3) along the surface x in the following way with the 
accuracy to a common phase factor: 

D(ha)(x) = [Dhj(Oi) + Dhj(hi)] exp{--ZTr[~khj(Oi) 

+ Q;koj(Th/'7o)](x sin a/7~)} 

x exp[2ri~Rkoj(oo(X sin a/7~)] 

+ ([Dhi(0i) + Din(hi)] exp{--27r[2~khi(Oi) 

+ ~;ko,(%/%)](xsino~/7'h)} + D'hi) 

x exp[2ri~koi(oi)(xsina/7'h) ] (26) 

with i = 1 for ICy > l, i = 2 for ~y < -1  and 
j # i  (j = 1,2). 

In the above formula, we used the imaginary part of 
the wave vectors to calculate the effect of attenuation 
of the waves reaching the point P in Fig. 3. The real 
and imaginary parts of wave vectors can be found from 

4. Experimental 

The sample was a 0.7 mm thick slab cut from a truncated 
octahedral diamond using a laser saw and polished. It 
was chosen from a number of synthetic diamonds with 
artificially introduced surfaces along (100) planes that 
we have examined. The chosen sample, together with 
a neighbouring sample cut from the same diamond, 
was also widely studied with various X-ray topographic 
methods, optical methods and cathodoluminescence to- 
pography (Wierzchowski, Moore, Makepeace & Yacoot, 
1991). 

The good-quality fringe patterns in the Bragg-case 
images of the stacking faults were obtained with a syn- 
chrotron X-ray source. The synchrotron double-crystal 
experiments were preceded by some experiments with a 
conventional X-ray source which provided some traces 
of the fringes. The experiments were performed using 
Cu Kaa radiation in an arrangement with the 13,32 
reflection from a quartz monochromator and various 
diamond reflections of 311 type. The matching of these 
two reflections is very good and the broadening of the 
rocking curve by spectral dispersion should theoretically 
be close to 0.5". 

The synchrotron experiments were performed at sta- 
tion 7.6 of the SERC Daresbury Laboratory storage 
ring. In these experiments, we attempted to reconstruct 
the situation of the conventional source experiment, but 
to obtain much better visibility of fringes due to the 
better spatial resolution and smaller influence of spectral 
dispersion. 

Owing to the 80 m distance of the experimental ar- 
rangement from the tangent point of the synchrotron 
source, it was possible to accept a much worse matching 
from the reflections on the monochromator and diamond 
investigated. We used there the 511 reflection from 
a (111)-oriented silicon monochromator to match the 
311 reflection from the diamond slab. We chose the 
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reflections that provided the best visibility of stacking 
faults, as had been found in the conventional source 
experiments. The arrangement selected 1.54 A radiation, 
the same wavelength as Cu Koq. In the case of a (100)- 
oriented surface, the inclination of the (311) reflecting 
planes qo is close to 25 °, while the inclination of the 
(111) stacking fault c~ is close to 54". 

The initial collimation of the beam was close to 
1" and it is five times smaller than the width of the 
rocking curve for the asymmetrical reflection used. In 
the first approximation, the divergence of the probe 
beam is further reduced by the asymmetry factor. Taking 
into account the effects due to the imperfect fitting 
of the lattice spacings, we evaluated the probe beam 
width as approximately 0.2". The effective divergence 
of the probe beam both in synchrotron and conventional 
source experiments could be increased by thermal and 
mechanical instabilities. That effect was monitored by 
intensity measurements and should not exceed 0.1". 
By placing the nuclear emulsion plate at a distance 
less than 3 cm, we found it was possible to obtain a 
spatial resolution better than 1 lxm. The topographs were 
exposed on Ilford L4 nuclear emulsions of thickness 
25 lxm, in a series containing more than 20 exposures 
on each plate, at various angles near the peak reflection. 
To reduce thermal instabilities, the monochromator was 
constantly illuminated by the beam and a shutter between 
the diamond and plate was operated remotely, as was 
the movement of the cassette. Each series was taken 
with 0.5" angular adjustment to the sample between 
exposures, and with prolongation of the exposure time 
on the tails of the rocking curve. 

Owing to the domination of the a polarization in the 
incident beam and because successive reflections had 
Bragg angles close to 45 °, we may consider the present 
images as fully corresponding to a polarization. 

Comparative studies of stacking-fault images were 
performed in another synchrotron double-crystal ar- 
rangement with the 004 symmetrical Bragg-case 
reflection matched by the 531 asymmetrical reflection 
from the same monochromator. The same Bragg angle 
close to 45 ° was used, selecting 1.35 A radiation. 

The surface investigated in the present topographs was 
relatively far from the seed and bounded the most perfect 
region of the diamond. Also, the pattern of growth 
sectors was relatively simple, containing a relatively 
large central (100) growth sector surrounded by four 
large { 111 } growth sectors separated from each other 
by { 110} sectors and from the central sector by narrow 
{ 311 } sectors. 

The configuration of stacking faults and other defects 
near the investigated surfaces may be deduced from 
the single-crystal back-reflection topographs in the 311 
reflection of Cu Koq, shown in Fig. 4. The single-crystal 
method is less sensitive and reveals only weak contrast 
on the growth-sector boundaries. The dislocations are 
revealed with much lower contrast but those near the 
stacking faults are quite intense and allow one to follow 
the location of stacking faults quite well. No fringes 
obviously occur in the single-crystal topographs. 

It should be noted that the stacking faults obeyed 
the extinction of contrast h .  f = m, where m is an 
integer and f is the fault vector. In crystals with the 

1 
diamond structure, f is either g(111) for an intrinsic 

2 ( 111 ) for the theoretically type of stacking fault or 
possible extrinsic type of stacking fault. The fault vector 
is perpendicular to the { 111 } fault plane. We were able to 
confirm these extinction rules using various topographic 
methods. A particular stacking fault is not visible in two 
of the four 311-type reflections, when it intersects the 
plane of diffraction parallel to the surface. 

5. Results and discussion 

5.1. Appearance of the fringes 

The details of the dislocation and growth-sector struc- 
ture of the sample have been described in a separate 
paper (Wierzchowski et al., 1991). It should be noted 
that the distribution of dislocations in this crystal was not 
uniform and that we revealed stacking faults by various 
topographic methods. Many of these stacking faults 
outcropped onto the artificially introduced surfaces. It 
was very difficult to obtain fringe patterns associated 
with a stacking fault, except in the case of synchrotron 
double-crystal topographs. 

Fig. 4. The 311 Cu Kc~x single-crystal back-reflection projection topo- 
graph, presenting the configuration of stacking faults close to the 
investigated surface of the slab cut from the De Beers synthetic 
octahedral diamond. The plane of diffraction is located horizontally. 
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(a) (b) 

(c) (d) 

Fig. 5. The series of four double-crystal Bragg-Laue images of a stacking fault, taken with the 51 lsi,--31 lo synchrotron arrangement with 1.54 A 
radiation. The topographs are ordered in increasing angle of incidence, (a) and (b) on the low-angle tail and (c) and (d) on the high-angle tail 
of the rocking curve. The arrows mark the detail where the behaviour of the first fringe is in the best agreement with the theory for an assumed 
intrinsic type of stacking fault. Projection of the diffraction vector, in each case, is horizontal and pointing to the left. The image width is 900 inn. 
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Well resolved interference fringes from stacking faults 
and dislocations were obtained with the 511si,-311o 
synchrotron arrangement, selecting 1.54/~, radiation. 

We observed a characteristic change in the periodicity 
of fringes; they become more compressed further from 
the peak. The fringes vanished close to the peak, corre- 
sponding to the total reflection range. This was also true 
of the fringes in the Bragg-Bragg case. In some cases, 
we observed bending of fringes close to the dislocations 
bounding the faults. The appearance of the fringes is 
shown in Fig. 5 showing their images in four angular 
settings - two on each tail of the rocking curve further 
from and closer to the maximum. The figure presents 
the images of the two stacking faults in the Bragg-Laue 
case with the most visible fringe pattern. 

Good visibility of interference fringes was due both 
to the spatial resolution being better than 1 gm and 
to the very good combination of small incident-beam 
divergence (of the order of 0.2") with a relatively wide 
intrinsic rocking curve (3.1") for the asymmetrical 311 
diamond reflection. The second factor partly accounted 
for the almost complete invisibility of fringes in the 
531Si,--400o synchrotron arrangement with 1.35/~ radia- 
tion. In the last case, the divergence of the incident beam 
was similar but the width of the rocking curve was twice 
as small. The relatively wide rocking curve also had the 
effect of decreasing the influence of inclusions and other 
defects, thus causing the crystal to behave more like a 
perfect one. 

5.2. Correspondence of experimental and theoretical 
images 

We obtained good correspondence between the ob- 
served fringe patterns at the stacking faults and the 
theoretical predictions presented in the former part of this 
paper. The theoretical intensity distributions for intrinsic 
and extrinsic types of stacking fault corresponding to the 
experimental Bragg-Laue images shown in Fig. 5 are 
presented in Figs. 6 and 7. In these figures, we present 
both theoretical images for an incident plane wave and 
for an incident wave with 0.3" divergence. The plots 
were calculated for the angular positions .40  equal to 
5.5, 6.8, 10.3 and 11.5", corresponding to values of ~9 
of 2.0, 1.2, -1.1 and 1.9, respectively. All diagrams 
were plotted to have their maximal value at the same 
level while in fact the corresponding maximal values 
are in the ratio 1 : 3.2 : 3.8 : 1.2. 

The corresponding angular position of the experimen- 
tal topographs seem to be in rough agreement with the 
values of the plots, in particular the angular distance 
between the topographs 5(a) and (b) is close to 1.5" and 
similarly between the topographs 5(c) and (d), and the 
accuracy of these estimates is close to 0.3". We also 
notice a systematic difference in periodicity of the two 
stacking faults shown in the topographs, owing to a local 
difference in the region of the rocking curve. 

The different types of stacking fault cause a small 
difference in the theoretical image close to the outcrop 
of the stacking fault (giving a difference in the starting 
phase of oscillations) and the image is different on the 
two sides of the rocking curve. These features provide 
the possibility of identification of stacking-fault type. 
The experimental topographs are in good agreement with 
theory and correspond better to those calculated for the 
intrinsic type of stacking fault. It may be easily found 
from (25) that the phases of all five component waves 
are differently dependent on the fault vector for z = 0. 

We have found that the main period of the interference 
fringes visible in the theoretical images of stacking 
faults is the same as that in the integrated images along 
a dislocation line at the same angular settings. The 
formation of fringes in both cases is similar, as the 
same single field is decomposed by a similarly situated 
obstacle and new wave fields with tie-points located 
on the normal to the obstacle are formed. There are 
some differences caused by different wave amplitudes 
corresponding to these wave fields; a more exact model 
has been discussed by Gronkowski & Malgrange (1984) 
but the main period AT is due to the difference of the 
wave vectors corresponding to these two points. It may 
be written by the formula 

AT = "/~/(sin o~[khl - -  kh2[) , (28) 

where, as previously, c~ is the inclination of the fault 
plane. According to (10) and (15), we can write 

AT = 7h/[Si n Ol I , ' 1 / 2  ' CK(%/ ' yh )  ' /2 

x (y,2 + 1)1/2[]. (29) 

The period is here dependent on the real parts of the 
wave vectors, which are themselves dependent only on 
the location of the obstacle; and it is not important in the 
above formula whether we take the wave points excited 
by the reflected or transmitted beam behind the fault 
plane. The formula was fulfilled in all calculated plots. 

It should be noted that the Bragg-case images are 
dependent on the stacking-fault type even at very low 
absorption. This is different from the case of plane- 
wave Laue-case images. In this last case, the two wave 
points are excited in the first part of the crystal and the 
dependence on the fault vector coming from the field 
subsequently generated from these two wave fields is 
compensated. The dependence on the fault type appears 
when the crystal is significantly absorbing (Kato, 1974). 

No significant decrease in visibility of the fringes in 
both theoretical and experimental images was observed 
on the high-angle tail of the rocking curve where the 
Borrmann effect was negative. The negative Borrmann 
effect on the high-angle side causes a faster decrease 
of maximal amplitude with distance from the outcrops 
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than that observed on the low-angle side for the positive 
Borrmann effect. 

In the case of theoretical profiles corresponding to the 
topographs taken using the 511 si,-  311 o arrangements, 
the including of beam divergence with a realistic value 
of 0.3" caused increasing smearing of successive fringes. 
It was connected with a characteristic increase of the 
background. This feature was well visible in experi- 
mental topographs. The integrated images marked by 
letters with primes are in much better agreement with 
experimental patterns than those for the plane wave. 

6. Concluding remarks 

The Bragg-case images of stacking faults exhibiting 
distinct interference fringes were obtained in a slab cut 
from a large synthetic diamond of truncated octahedral 
habit with the use of double-crystal topographic methods 
using a synchrotron X-ray source. The best visibility of 
fringes was obtained using the 51 lsi,-31 lo arrangement 
owing to both the very good spatial resolution and the 
good combination of small divergence of the incident 
beam and the relatively wide rocking curve. 

The fringe patterns were strongly dependent on the 
angular position on the rocking curve. They were invisi- 
ble in the peak regions and became more closely spaced 
further from the peak. 

The application of plane-wave theory for the diffrac- 
tion from stacking faults has been discussed. We ob- 
tained a good correspondence between theoretical and 
experimental patterns, especially after taking into ac- 
count the finite divergence of the incident beam. 

The starting sequence of the theoretical images close 
to the stacking-fault outcrop was found to depend on the 
type of stacking fault and this sequence was also depen- 
dent on the side of the rocking curve. This provided 
the possibility of identification of the stacking-fault 
type, different from the case of transmission plane-wave 
topographs for low absorbing crystals. We confirmed the 
intrinsic character of the stacking faults observed. 

The authors are greatly indebted to the Science and 
Engineering Research Council and to De Beers Industrial 
Diamond Division (Pty) for financial support. They 
would also like to thank Professor A. R. Lang FRS 
(University of Bristol) for his helpful advice, Mr R. 
Waggett for taking part in some of the experiments and 
the referee for constructive comments. 
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Fig. 7. The theoretical intensity distributions corresponding to the experimental images shown in Figs. 6(b) and (c) assuming an extrinsic type of 
stacking fault. The primes denote the integrated images, taking into account the 0.3" divergence of the incident beam. 
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Abstract 

The viability of solving the structure type of zeolitic and 
layered materials applyin~ multisolution direct methods 
to low-resolution (-~2.2A) powder diffraction data is 
shown. The phases are refined with the tangent formula 
derived from Patterson-function arguments [Rius (1993). 
Acta Cryst. A49, 406--409] and the correct phase sets are 
discriminated with the conventional figures of merit. The 
two test examples presented are (a) the already known 
tetragonal zeolite ZSM-11 (space group 14m2) at 2.3 ,~ 
resolution and (b) the hitherto unknown layer silicate 
RUB-15 (Ibam) at 2.2,~ resolution. In both cases, the 
tetrahedral Si units appear as resolved peaks in the 
Fourier maps computed with the phases of the highest- 
ranked direct-methods solutions. 

1. Introduction 

To understand the physical and chemical properties of 
zeolitic and layered materials, and to retrieve valuable 
information about the synthesis mechanisms, a knowl- 
edge of their crystal structures is a prerequisite. When no 
sufficiently large single crystals are available, the crystal 
structure must be solved from very limited experimental 
data, such as powder diffraction, in combination with 
model building and other experimental techniques, e.g. 
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295i MAS NMR and electron diffraction. In recent years, 
the easier access to synchrotron X-ray sources, the 
existence of programs for extracting integrated intensities 
from high-resolution powder patterns (e.g. Pawley, 1981; 
Baerlocher, 1990) as well as improved computing 
facilities have rendered possible the ab initio solution 
of some highly crystalline zeolite-like compounds by 
direct methods (e.g. Rudolf, Saldarriaga-Molina & 
Clearfield, 1986; McCusker, 1988). The application of 
alternative methods, such as the direct interpretation of 
the Patterson function, is hampered by the relatively 
large number of tetrahedrally coordinated atoms (here- 
after referred to as T) and by the fact that T atoms, e.g. Si, 
are not very much heavier than O atoms, so that the T-T 
interatomic peaks cannot be easily identified in the 
Patterson map. Other alternatives such as the application 
of Patterson search techniques, although viable (Rius & 
Miravitlles, 1988; Gies & Rius, 1995), are far from 
trivial. 

In many cases, zeolites crystallize as microcrystalline 
powders of poor crystallinity. The use of synchrotron 
radiation for these cases is less suitable. In these 
materials, peak broadening due to the sample often 
outweighs instrumental broadening so that only the low- 
resolution intensities can be extracted reliably from their 
powder patterns. This imposes serious limitations on the 
applicability of direct methods. These limitations have 
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